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Network-induced nonequilibrium phase transition in the ‘‘game of Life’’

Sheng-You Huang, Xian-Wu Zou,* Zhi-Jie Tan, and Zhun-Zhi Jin
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

~Received 20 July 2002; published 10 February 2003!

A cellular automation model of the ‘‘game of Life’’ on a two-dimensional small-world network is presented
in order to count in long-range interactions among living individuals in social or biological systems. The
density of the life and its fluctuation are calculated, respectively. The present model exhibits a nonequilibrium
phase transition from an ‘‘inactive-sparse’’ state to an ‘‘active-dense’’ one at a certain intermediate value of the
network disorder. Employing finite-size scaling analysis, we estimate the location of the critical point with
pc(`).0.3685. The transition is of the ‘‘second-order’’ type with power-law diverging length. We obtain the
critical exponents 1/n.1.70, b.0.50, andb/n.0.85. The calculated results indicate that the present model
may belong to the universality class of directed percolation.
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I. INTRODUCTION

For many years, the cellular automation has been ex
sively studied because of its relevant application in ma
social, biological, and physical processes@1–4#. Conway’s
‘‘game of Life’’ ~GL! is probably the best known cellula
automation, which has been suggested to mimic aspec
complexity in nature@5–10#. The original GL is a society of
cells~on a two-dimension lattice!, in which the state~‘‘dead’’
or ‘‘alive’’ ! of each cell depends on deterministic local ru
@5#. The evolution is determined by the number of livin
cells among its eight nearest and next-nearest neighbor~i!
A live cell that has four or more live neighbors will die in th
next time step~decrease by overcrowding!. Also a live cell
will die in the next time step if it has one or zero live neig
bor ~decrease by isolation!. However, if the live cell has two
or three live neighbors it will remain alive.~ii ! At a dead site,
a new cell will only be born in the next time step if it ha
exactly three live neighbors. Starting from random init
conditions, ‘‘Life’’ will evolve through complex patterns
eventually settling down in a stationary state. In spite of
simple algorithm, the GL simulates the dynamic evolution
a society of living individuals, including processes such
growth, death, survival, self-propagation, and competition

All the work about Life~deterministic or stochastic! takes
into account only local interactions, i.e., the state of each
depends on its 8 neighbors@5–10#. However, real popula-
tions rarely fall into this simple category. For example, ea
individual is not only dependent on its neighbors, but a
may depend on a distant individual because of the develo
highways or convenient information communications in r
society. Recently introduced by Watts and Strogatz,
small-world network~SWN! @11# attempts to translate th
complex topology of social interactions into an abstr
model. Small worlds have been found to play an import
role in the study of the influence of the network structu
upon the dynamics of many complex processes in nat
such as disease spreading, formation of public opinion,
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tribution of wealth, biological evolution, etc.@12–22#.
The SWN model consists of a regular lattice, typically

one-dimensional lattice with periodic boundary condition
although lattices of two or more dimensions have been s
ied as well, with each bond in the original lattice rewired
random with probabilityp. The model exhibits unusual con
nection properties. On one hand it shows high network cl
tering, like regular graph. On the other hand it shows a v
small average shortest path through the network between
two sites. It has been shown that geometrical properties
well as certain statistical mechanics properties, show a fi
order transition atp50 in the limit of large systems,N
→` @23,24#. That is, any finite value of the disorder induc
the small-world behavior@14,23#. In this paper we study the
cellular automation of the game of Life on the small-wor
network in order to investigate the effect of the populati
structure on the evolution of Life. It shows that there exist
nonequilibrium phase transition in the behavior of ‘‘Life
dynamics at a finite value of the network disorder.

II. MODEL AND METHOD

We investigate the effect of the topology of populatio
on the game of Life. The interactions between the individu
of the population are described by a two-dimensional sm
world network, and the link between two sites represents
there exists interaction between two individuals which a
located at these two sites, respectively. To build a sm
world network, we start with a regular square lattice of s
L3L with periodic boundary conditions. Each site in th
lattice is linked to its 8 nearest and next-nearest neighbor
order to incorporate the local rule of the original GL. The
each link in the original lattice is rewired at random, wi
probability p, to another site of the system. With probabili
(12p) the original link is preserved. Self-connections a
multiple connections are prohibited. With this procedure,
have a regular lattice atp50 and progressively random
graph forp.0, with the average coordination number 8.

Based the built small-world network, we describe how t
Life evolves. Each site in the lattice may be in two stat

ail
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representing the presence or absence of a live individual.
fate of each state depends on its neighbors. In the pre
model, we define that two sites are neighboring if there ex
a link between them. So the rule of the evolution for the L
is as follows. A dead individual will only come to life if it
has exactly three living neighbors. A living individual wi
stay alive if it has two or three living neighbors, otherwise
will die. We start at timet50 with a random distribution of
living sites with densityr0. As in standard cellular automa
tion procedure, at each time step all sites are updated si
taneously according to the rule described above, until the
reaches a stationary state. It should be noted that the sta
ary state of the original GL model depends on the init
conditions@25,26#. The average stationary density of livin
individualsrs approximates to a constant for initial densiti
in the range 0.15<r0<0.75 @25,26#. We focus on the effec
of the network structure on the evolution of living individu
als. Without loss of generality, the initial density is chosen
be r050.35, around which the mean-field theory predict
maximum stationary density of living individuals@26#.

III. RESULTS AND DISCUSSION

We have performed extensive numerical simulations
the described model on the small-world network with siz
ranging fromL520 to L5500 and different rewiring prob
abilities pP@0,1#. For every system with sizeL, the calcu-
lated results are averaged over bothn different realizations of
the network and 10 independent runs for each network r
ization, in such a way thatn3L2'2.53105.

Figure 1 shows the density of lifer(t) as a function of
time t at the network disorderp50.37 and 0.44 for the sys
tem with size L550, respectively. As we can see, atp
50.37 the density of lifer(t) rapidly drops toward a very
small value. However, atp50.44 the densityr(t) decreases
a little and then approaches a large fluctuating value. In
1, we also plot the stationary density distributionD(r) for
p50.37 and 0.44, respectively. From the density distribut
D(r) a peak is easily identified. The positions of the pea
show a very large difference corresponding to two differenp

FIG. 1. The stationary density distribution of lifeD(r) at the
network disordersp50.37~a! and p50.44~b! for the lattice sizeL
550. Inset: the density of lifer(t) as a function of timet at two
correspondingp values.
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values~see Fig. 1!. The drastic change of the densityr(t)
and distributionD(r) within such a small range ofp indi-
cates that there may exist a phase transition of Life a
certain intermediate value ofp. From Fig. 1, we also find tha
the stationary state of Life has been reached after about 2
time steps. Therefore, all the results are sampled over
time interval ranging from 2000 to 2100 time steps for ea
independent run in the simulations.

In addition to the density of lifer(t), we also calculate
the fluctuation of the densityx(t) in order to characterize the
activity of life. The parameterx(t) is defined as the squar
value of the difference between the densities correspond
to two sequential time steps, i.e.,

x~ t ![@r~ t !2r~ t21!#2. ~1!

Figure 2 shows the average stationary density of the
rs5^r(t→`)& and its normalized fluctuationxs5L^x(t
→`)& as a function of the network disorderp for the system
with size L5100, respectively. It can be seen from Fig.
that there exists a sharp jump for bothrs and xs in the
vicinity of a critical value ofpc.0.375. Whenp,0.375, the
present model is similar to the GL in a regular lattice@25,26#
and the density of lifers have a very small value of abou
0.02. Whenp.0.375, the present model presents the res
of the GL in a random graph, and the densityrs.0.347,
which is consistent with the mean-field theory@25,26#. Cor-
respondingly, the pattern consisting of living individua
transits from a sparse state to a dense one at the critical v
0.375~see the insets of Fig. 2!. The results in Fig. 2 confirm
that the present model exhibits a nonequilibrium phase tr
sition from an inactive-sparse phase to an ‘‘active-den
one at a intermediatep value. The fluctuation of the densit
xs , which transits fromxs50 to xs.0 at the critical value
pc , serves as the order parameter in the present model.

FIG. 2. The stationary density of lifers ~solid square! and its
normalized fluctuationxs ~open square! as a function of the net-
work disorderp for the lattice sizeL5100. Insets: the patterns o
living individuals at the network disordersp50.35 ~a! and p
50.45 ~b!.
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In the simulations, the systems with finite sizes are us
The determined critical probabilitypc depends the size of th
system. To obtain the true critical pointpc(`), which corre-
sponds the critical value for very large systems, we study
stationary behavior of Life for several systems with differe
sizes. Figures 3~a! and 3~b! plot the density of lifers and its
fluctuationxs as a function of the network disorderp for the
systems with sizes fromL525 to L5500, respectively.
From Fig. 3 we can see that there exists a transition a
certain finitep value for each system. In the present mod
the fluctuation of the system is very strong~see Fig. 1!. The
smaller the system size, the stronger is the fluctuation of
density. For a system with small size, a large fluctuation
r(t) may cause the system to go extinct, i.e., to enter
completely ‘‘inactive-sparse’’ state within the simulatio
time. Therefore, the transition is smoother for the sma
system. The location of the critical pointpc(L) in a finite-
size lattice also shows a deviation from the true critical va
pc(`). From Fig. 3, we can estimate the critical valu
pc(L) for the systems with different sizes corresponding
the inflexions of the curves. The errors in determiningpc(L)
is due to locating the inflexions of the transition curve
Thus, one can reduce the errors ofpc(L) by means of aver-

FIG. 3. ~a! The stationary density of lifers and ~b! its normal-
ized fluctuationxs as a function of the network disorderp for sev-
eral systems with different sizes. From left to right the sizeL
5500, 200, 140, 100, 70, 50, 35, and 25.
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aging the results over more independent runs to ob
smoother curves. The results ofpc(L) are shown in Fig. 4~a!
on a log-log plot. It can be seen from Fig. 4~a! that with the
increase of the system sizeL the critical valuepc(L) de-
creases toward a constant value, which corresponds to
true critical valuepc(`) for the infinite-size system. Accord
ing to the finite-size effects of the systems, the apparent c
cal pointpc(L) and true critical pointpc(`) are expected to
scale with sizeL as @27#

pc~L !2pc~`!;L21/n, ~2!

wheren is the critical shift exponent. To obtain the values
the true critical pointpc(`) and critical exponentn, Fig.
4~b! shows the critical deviationpc(L)2pc(`) as a function
of the system sizeL on a log-log plot. When the true critica
value is chosen to bepc(`).0.3685, we obtain the bes
power-law relation of the data@see Fig. 4~b!#. The excellent
linear dependence in Fig. 4~b! indicates that within the un-
certainties, the finite-size scaling relation Eq.~2! is reason-

FIG. 4. ~a! The critical network disorderpc(L) for finite-size
systems as a function of the system sizeL on a log-log plot. The
symbols are the simulation results and the line is guided to eye~b!
The deviationpc(L)2pc(`) from the true critical value as a func
tion of sizeL on a log-log plot, wherepc(`) is chosen to be 0.3685
The symbols are the simulation results, and the line is the le
square fit to the data.
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able for describing the present simulation results. From F
4~b! we obtain the critical exponent 1/n51.70(5) by means
of the least-square fit to the data.

Going a step further, we investigate the behavior of
systems in the vicinity of the critical pointpc . By analogy
with Ref. @8#, we assume that the present phase transitio
a second-order continuous one. Thus, the order parame
expected to have a power-law behavior near the critical p

xs~p→pc
1!}~p2pc!

b, ~3!

whereb is the critical exponent of the order parameter. No
that Eq.~3! only holds true in the system sizeL→`. How-
ever, the lattice model of SWN essentially determines tha
is impossible to built a very large network, and also it
difficult to obtain accurate simulation results near the criti
point because of the topology fluctuation in the network a
also the life fluctuation in the evolution. Thus, we will focu
on the systems with sizeL<200 to save the computatio
time. For finite-size systems, we can determineb corre-
sponding to the vanishing rate of the order parameter fr
the log-log plot ofxs as a function of@p2pc(L)# @28#. In
the simulations, we have used more network realizatio
i.e., n3L2'53105, to obtain a accurateb value. These
results are plotted in Fig. 5. From Fig. 5 we can see that
data show a good power-law dependence in a certain re
of disorder values for different system sizes. The slope of
line fitted to the data can be associated with the critical
ponent for which we obtainb50.50(8). Theerror in deter-
mining b is due to the uncertainties in thexs and thepc(L)
values. Since the scaling plots in Fig. 5 depend sensitively
the choice of the critical disorderpc(L) and our method of
determining their values is indirect, we give rather conser
tive estimate for the error ofb.

With the critical exponents 1/n51.70(5) and b
50.50(8), we can obtain another critical exponentb/n
50.85(13). For (211)-dimensional directed percolation
the values of critical exponents areb50.60 and b/n'

FIG. 5. The log-log plot of the fluctuationxs as a function of
@p2pc(L)# for several system sizes. The slope of the line fitted
the data is associated with the critical exponentb.
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50.82 @29,30#. Thus, it can be concluded that the prese
model may belong to the universality class of directed p
colation.

As for the reason that the present critical transition ta
place at a intermediatep value but not atp50, it is not still
very clear up to date. It is difficult to obtain a analytic
expression to describe this phenomenon because of
strongly nonlinear effects in the systems. As mentioned
fore, a mean-field theory can be shown to predict the h
density of Life, but this can be expected to describe only
small-world network atp51, and it cannot explain the na
ture of the transition at the lower values of disorder. Here,
will present some conjectural explanations for the transit
from our observation of the dynamical behavior of the s
tem. As we know, there exists a typical lengthL* (p)
;p21/d in the small-world network such that for the syste
size above which the network is indeed a small world a
below which it behaves as a regular lattice@14#. For the
present model, the critical transition occurs at the netw

FIG. 6. ~a! The normalized clustering coefficientC ~solid line!

and average shortest-path length,̄ ~dashed line! as a function of the
disorderp for the small-world network with sizeL5100, and the
arrow indicates the critical pointpc.0.37. ~b! The degree distribu-
tion P(k) for the small-world network with the disorderp
50.01(h), 0.1(s), 0.251(n), 0.398(¹), 0.631(L), and 1.0(*).
The data are sampled from 1000 independent network realizati
Inset: the peak valuePmax of the degree distribution as a function o
p, and the arrow indicates the critical pointpc.0.37.
7-4
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disorder ofpc.0.37. Obviously, the present system sizeL is
far larger thanpc

21/2, which indicates that the present trans
tion cannot result from the finite-size effects. An explanat

involving the average shortest-path length,̄(p) is also not

reasonable, since,̄ is known to behave critically with the
disorder ofp50 @23,24#, and we observe the critical trans
tion at pc.0.

In addition to ,̄, the small-world network can be de
scribed by the clustering coefficientC(p), which character-
izes the closest environment of a site. At lowp values, the
networks are rather regular and highly clustered. Asp ap-
proaches 1,C decreases. The crossover from high to lo
clusterization occurs at a higherp value, compared to tha

observed in the decay of,̄ @see Fig. 6~a!#. Moreover, the
change in the clustering coefficientC(p) is accompanied by
a corresponding one in the degree distributionP(k), where
P(k) denotes the probability of the number of sites withk
edges in the network@see Fig. 6~b!#. Therefore, it is expected
that the present transition maybe result from the chang
the clustering coefficientC and degree distributionP(k) in
the SWN. Whenp is small (,pc), the network is high clus-
tered as the regular lattice, and the degree distributionP(k)
is very narrow, centered on the average coordination num
of ^k&58 ~see Fig. 6!. In this case, most of living individuals
will die because of overcrowding or isolation, and only
small number of individuals survive as the form of glide
blinks, ponder, etc.@25,26#. Whenp is large (.pc), the clus-
tering coefficient is small and the network have a wide
gree distributionP(k) with k ranging fromk'1 to k'20
~see Fig. 6!. In this situation, there exists a certain number
sites with long-range links, through which each site can
easily connected to each other in the network. On the
hand, the birth probability of new individuals will greatl
increase because of the wide degree distribution, which
be comparable to the dead one of the living individuals.
the other hand, the birth of a new individual can rapid
affect the whole system through the long-range links. The
fore, the living individuals have a high fluctuating density
that in the random graph, as expected. When the cluste
Le

,
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coefficient C(p) crosses over from the higher value to
smaller one, it is expected that the transition occurs. Fr
Fig. 6~a! we obtain the crossover pointpcr.0.35, which is
consistent with the present critical valuepc.0.37. From Fig.
6~b! we can also find that asp approachespc , the range of
the degree distribution begins to include the low degree
k'3, and the peak valuePmax of P(k) also shows a corre
sponding transition.

IV. CONCLUSION

In summary, we have investigated the cellular automat
‘‘game of Life’’ on a two-dimensional small-world network
by extensive numerical simulations. The results show t
with the increase of the network disorderp, the present
model exhibits a second-order phase transition at a inter
diate disorder valuepc . Whenp,pc , the stationary behav
iors of systems are close to those of Life on a regular lat
with a very small static density of life. Whenp.pc , the
stationary behaviors of systems are consistent with thos
Life on a random graph with a fluctuating high density
living individuals, and the present model presents the me
field results of game of Life. The location of the critical poi
is precisely estimated withpc.0.3685 by means of the
finite-size scaling analysis. The critical exponents are a
obtained, which are found to be consistent with those
directed percolation. The present method can also be app
to study the other cellular automation models. From a pr
tical point of view, the present critical transition is a usef
guide for building a network. Since the long-range conn
tion usually costs more than the local one, it is advantage
to obtain the value ofpc in advance, above which the ind
viduals in the system have a fluctuating high density, so t
one can establish a high-quality network with least consum
tion of resources.
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